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ABSTRACT 

A transient computer model[11 is used to estimate plasma parameters in a high-current 
demountable Cs-Ba tacitron. The model couples the external circuit to the plasma 
discharge, and calculates electron energy, plasma density, sheath potentials, cesium 
coverage on the emitter surface, forward voltage drop, and discharge current as functions 
of time. Fitting the model I-V curve to the measured I-V characteristic of an experimental 
device provides an estimate for various internal physical parameters using only the 
terminal characteristics of the device and the reservoir and electrode temperatures. 

The high-current demountable Cs-Ba tacitron was designed and fabricated at the Russian 
Scientific Center, Kurchatov Institute, and tested by the University of New Mexico's 
Pulsed Power and Plasma Sciences Laboratory[21 as part of a program to develop 
radiation-hard switching elements for use in space nuclear power applications. In addition 
to demonstrating high-current operation, testing of this tacitron was intended to provide 
scaling information for future efforts. Estimates of internal physical parameters, based on 
the transient computer model, are used to provide greater insight on device scaling. 

INTRODUCTION 

A series of papers were presented at the Tenth IEEE International Pulsed Power Conference £
241 

that described the performance of two Cs-Ba tacitrons designed and fabricated at the Russian Scientific 
Center, Kurchatov Institute, and tested by the University of New Mexico. The two tacitrons, one a sealed 
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device, the other a demountable high current device, are triode gas-discharge tubes, similar in construction 
to thyratrons. The primary difference between a tacitron and a thyratron is that the tacitron is designed to 
be completely grid-controlled whereas a thyratron has grid control only over ignition. The high current 
device was designed to modulate average currents in the range of 100 to 200 A, with the intent of 
demonstrating proof-of-principle power conditioning capability for a 6 kWe direct energy conversion space 
power source. 

Data gathered from the high current tacitron included I-V characteristics obtained while varying 
parameters such as emitter temperature and gas pressure. To come to a better understanding of the device, 
and thereby improve device performance, an understanding of the plasma parameters within the device was 
necessary. This paper describes the application of a transient computer model for low-pressure Cs-Ba 
discharges [IJ in estimating plasma parameters within the high current tacitron by using terminal 
characteristics of the device. The model can calculate the electron energy, plasma density, density of 
ground and excited states of Cs, sheath potentials, Cs coverage on electrode surfaces, and forward voltage 
drop. 

DESCRIPTION OF THE COMPUTER MODEL 

In the original work by Luke and El-Genk [!J the governing equations for the Cs-Ba diode transient 
model were simplified by making a variety of assumptions. The plasma was assumed to be made up of 
electrons, ionized Cs atoms in the ground state, and neutral Cs atoms in the ground and first four excited 
states. Because Ba has a much lower base pressure than Cs in these devices, Ba is assumed not to 
participate in the plasma. The plasma is assumed to be neutral, with electric fields small and all potential 
drops occurring in the Langmuir sheaths near the electrodes. The relatively low current density allows 
magnetic field effects to be neglected, and since the discharge gap is modeled as an open volume, particles 
are free to enter and leave the gap during the discharge, including adsorption and desorption from the 
electrode surfaces. 

Because the mean free path is greater than the width of the discharge gap, beam electrons do not 
directly interact with the plasma and the elastic collision cross sections are averaged over the Maxwellian 
electron energy distribution function of thermal electrons. The plasma is also assumed to be homogeneous 
throughout the discharge volume. 

DESCRIPTION OF THE TACITRON 

Figure 1 shows a schematic of the tacitron. The emitter heater consists of a wound tungsten 
filament placed within a molybdenum emitter cup. A molybdenum spacer is used between the upper lip of 
the emitter cup and the boron-alumina nitride ceramic insulator that isolates the emitter from the grid. The 
grid is a honey-comb design in 6 quadrants, constructed of 1-mm wide tantalum ribbon with a mean cell 
diameter of approximately 1 mm. The quadrants are separated by 1 mm thick struts running radially 
outward from a 1.6-cm diameter hub. The collector electrode is isolated from both the base flange and the 
grid electrode by boron-alumina nitride ceramic insulator. Emitter and collector planar surface areas are 
28 cm2 and 27 cm2

, respectively. The grid has the same planar area as the emitter, with a transparency of 
65%. The grid is located approximately in the center of the emitter-collector gap, with grid-collector and 
grid-emitter electrode separations of approximately 1.5 mm. External reservoirs allow cesium and barium 
pressures to be controlled independently of emitter temperature. The Ba reservoir consists of a 
molybdenum cup mounted on an upright linear feedthrough below the base flange, while the Cs reservoir is 
placed outside the vacuum chamber. During device operation, the base flange is maintained at a 
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temperature approximately 30 - 80° C higher than the Ba reservoir to prevent Ba and Cs condensation 

within the flange. The temperature gradient between the emitter and the base flange insures that the 
internal surfaces of the tacitron are hot enough to remain free from excessive Cs or Ba condensation The 
Cs orifice plug in the base flange Cs delivery line serves to minimize the diffusion of Ba into the Cs system 

(B,Al)N Ceramic 
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Emitter Heater 

Emitter 

Grid 

Figure. 1: Schematic illustration of the high-current Cs-Ba tacitron. 

PRELIMINARY RESULTS 

Figure 2 presents a set of experimental 1-V curves taken at constant emitter temperature and 
barium pressure, but differing cesium pressures151• Model results for these device conditions are displayed 
in Figure 3. Note the general correlation between the model and the experimental data- as cesium pressure 
increases, the forward voltage drop (VeE) decreases below the knee, and the peak current increases in the 
Schottky emission region above the knee. In terms of the general trends, the model behavior is good, and 
indicates that the most significant aspects of the underlying physics has been modeled correctly. 

However, it is apparent that the model does not closely predict the actual forward voltage drop of 
the device. This is probably not a fundamental limitation of the model, as the fit between the original model 
implementation and a small planar diode was quite good111• The most likely cause for the discrepancy 
between this model implementation and experimental data is the absence of a grid electrode in the model. 
The grid surface area for this device is greater than the combined surface areas of the collector and emitter 
electrodes - providing a large surface for adsorption of Cs atoms and energy loss from the plasma. 
Consider that at a Cs-reservoir temperature of 130° C, the total number of Cs atoms in the discharge 

volume is about 1015
, while the number of Cs atoms in a full monolayer on all electrode surfaces is greater 
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than 1016
• Of course, at operating temperature, the Cs coverage on the collector is generally no more than a 

few percent prior to discharge, and rapidly drops during discharge, while the coverage on the emitter is 
about an order of magnitude less than that on the collectorl61• Electrode surfaces do, however, provide a 
significant source of neutral Cs atoms during the discharge. 
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Figure 2: 1-V curves taken at constant emitter 

temperature (TE = 1050° C) and barium pressure 

(Pba = 2.9 mTorr), but differing cesium 
pressures. 
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Figure 3: Model 1-V curves at constant emitter 
temperature (TE = 1050° C) and barium pressure 

(Pba = 2.9 mTorr), but differing cesium 
pressures. 

Figure 4 illustrates the model estimates of plasma density for the three cases depicted in Fig. 3. 
Not surprisingly, the higher the Cs pressure, the higher the plasma density during discharge. Figure 5 
illustrates the model estimate of electron temperature for each case. Again, the model output is consistent 
with the expectation that electron temperature will be higher in those cases for which the forward voltage 
drop is higher. Model cesium pressure during the discharge, relative to the starting pressure, is depicted in 
Figure 6, and is consistent with the modeled Cs coverage on the collector. 
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Figure 4: Plasma density for the three cases of 
Fig. 3. 
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Figure 6: Relative Cs pressure in the discharge 
volume for the three cases of Fig. 3. 
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Figure 5: Electron temperature for the three 
cases of Fig. 3. 
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DISCUSSION 

The computer model[11 reflects the trends in the measured 1-V curves, but thusfar fails to accurately 
predict device performance. 111is is probably due primarily to the absence of a grid in the model, since it is 
known that the grid contributes to higher voltage drops in triodes versus diodes, and the computer model 
does accurately predict the performance of diode devices[11• 

Future work will incorporate the grid into the model, in order to accurately predict 1-V 
performance of the device. In addition, an attempt will be made to simulate grid-controlled current 
modulation, although the mechanism[7

•
81 thought to be primarily responsible for current quenching in thick­

grid tacitrons is not particularly amenable to simulation. 
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